Ikkje-evklidsk geometri

I ikkje-evklidsk geometri gjeld ikkje Euklids femte aksiom, det såkalla parallellaksiomet (vel ein å godta parallellaksiomet får ein euklidsk geometri). Nemninga blir brukt generelt om geometri som byggjer på andre aksiom enn den euklidske. Meir spesielt brukast nemninga om dei geometriane kor parallellaksiomet i den euklidske geometrien er erstatta med eit anna aksiom (som ikkje står i strid med dei øvrige euklidske aksiom). Av desse ikkje-euklidske geometriane finst det to typar; den hyperbolske geometrien, der det gjennom kvart punkt utanfor ei rett linje kan trekkjast uendeleg mange parallellar til den gjevne linja, og den elliptiske geometri, der det ikkje finst nokon parallell i det heile. Førstnemnde geometritype stammar frå Carl Friedrich Gauss, János Bolyai og Nikolaj Lobatsjevskij frå første tredjedel av 1800-talet. Den andre typen vart konstruert av Bernhard Riemann noko seinare. Skilnadene mellom desse geometritypane kan òg skildrast på ein annan måte: sjå på dei to linjene i eit plan som begge står vinkelrett på ei tredje linje. I euklidsk og hyperbolsk geometri er då dei to linjene parallelle. I euklidsk geometri blir likevel dei to linjene verande i ein fast avstand, medan i hyperbolsk geometri «bøyer dei av» frå kvarandre med aukande avstand i takt med at avstanden frå skjeringspunktet med den felles vinkelrette linja aukar. I elliptisk geometri «bøyer» linjene mot kvarandre, og til slutt skjer dei kvarandre; såleis eksisterer ingen parallelle linjer i elliptisk geometri. I den euklidske geometrien (av og til kalla parabolsk geometri) finst det alltid éin, og berre éin, parallell. Dei ikkje-euklidske geometriane representerer ein viktig milepåle i matematikkhistorie, idet dei illustrerer at det finst logisk konsistente geometriske system som tilsynelatande står i strid med dei geometriske førestillingane vi får gjennom sanseerfaringar.


Developed by StudentB